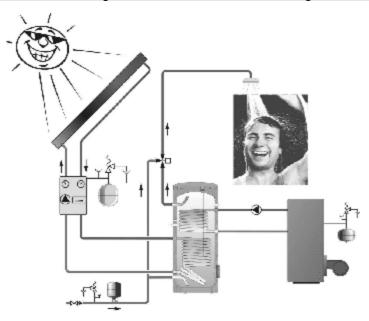


altech solar. Trinkwassererwärmung und Heizungsunterstützung mit Solarenergie

Komponenten und Empfehlungen für die Planung

Inhalt Grundlagen der thermischen Solartechnik 2 3 Regionale Strahlungsverteilung in Deutschland Solaranlage mit bivalentem Speicher 4 Solaranlage mit vorgeschaltetem monovalentem Speicher 5 Solaranlage mit Durchlauferhitzer und monovalentem Speicher 6 7 Solaranlage zur Heizungsunterstützung mit Kombispeicher KSW/KSV Solaranlage zur Heizungsunterstützung mit zwei Speichern 8 9 Solaranlage mit Kombispeicher und Schwimmbad Solaranlage zur Trinkwassererwärmung für Mehrfamilienhäuser und andere Großverbraucher 10 11 Grundsätzliches zu den hydraulischen Schaltbildern Dimensionierung von Solaranlagen 12 - 14 15 Komponenten des ALTECH Solarprogrammes Kollektorzubehör 16 Solarstationen 17 Regler 18 19 Regelungstechnisches Zubehör Dimensionierung der Ausdehnungsgefäße 20 **ALTECH Solarspeicher** 21 Kombispeicher KSW (Durchlauferhitzer) 22 Kombispeicher KSV (Tank in Tank) 23 Pufferspeicher KSP 24 25 Solarzubehör Planungshinweise für die Montage 26 - 27 Sicherheitsdatenblatt Tyfocor L 28 - 29 Kollektor-Mindestertragsnachweis 30 Fax-Solaranfrage 31 - 3233 Notizen



Einführung

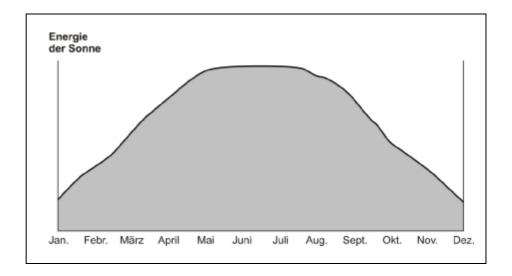

Die thermische Solartechnik ist heute ein lage kann 50 – 60 % des Energiebedarfs tanz. fester Bestandteil der Haustechnik. So- für die Trinkwassererwärmung decken. laranlagen von Altech können sowohl zur Aber auch die kombinierte Trinkwasserreinen Trinkwassererwärmung als auch erwärmung und Heizungsunterstützung soll Ihnen bei der Zusammenstellung der zur Heizungsunterstützung eingesetzt hat aufgrund der immer energiebewuss- Anlage behilflich sein. werden. Eine richtig ausgelegte Solaranteren Bauweise eine zunehmend Akzep-

Diese Planungsunterlage gibt detaillierte Auskunft über die einzelnen Bauteile und

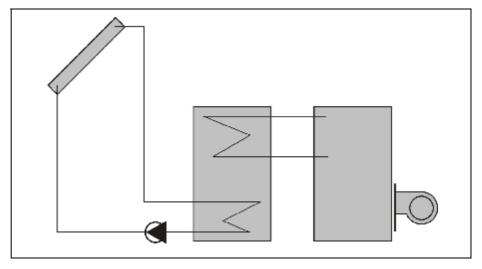
Schema einer Solaranlage für die Brauchwassererwärmung

Schema einer Solaranlage für die Brauchwassererwärmung und Heizungsunterstützung

Grundlagen der thermischen Solartechnik

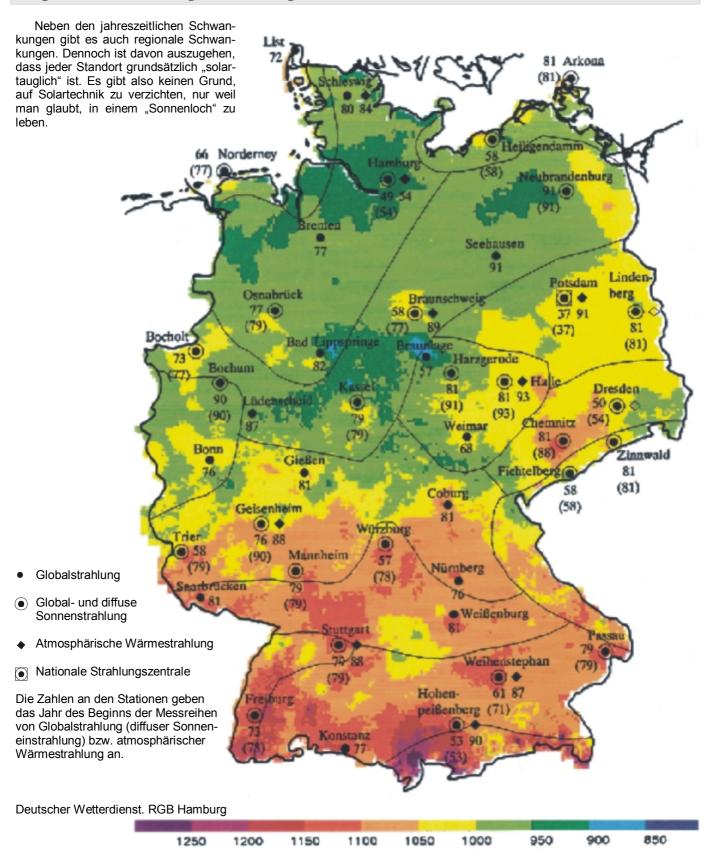

Die Sonne ist der Hauptenergielieferant der Erde, denn auch Öl, Gas, Kohle und Holz sind letztendlich nur "Abfallprodukte" der Sonnenenergie. Die von der Sonne in wenigen Stunden zur Verfügung gestellte Energie würde ausreichen, den Jahresenergiebedarf der Menschheit zu decken.

Als wirtschaftlichste Form, die Energie der Sonne zu nutzen, hat sich der Einsatz von Sonnenkollektoren durchgesetzt.


Funktionsweise einer Solaranlage:

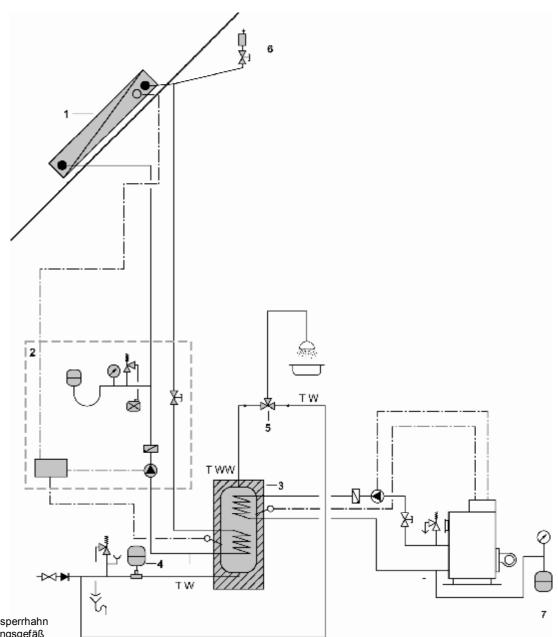
Mit Hilfe der Kollektoren wird die Strahlung der Sonne in Wärme umgewandelt. Durch die spezielle Beschichtung der Kollektoren wird bis zu 95 % der Strahlung absorbiert, gleichzeitig aber nur ca. 10 % in Form von Wärmestrahlung wieder abgegeben. Da die durch die Sonne zur Verfügung gestellte Energie sowohl tageszeitlichen als auch jahreszeitlichen Schwankungen unterworfen ist, verfügt jede Solaranlage über einen Speicher. Je nach Einsatzbereich sind dies Trinkwasser-

oder Heizungswasserspeicher. Die Wärmeübertragung erfolgt durch einen separaten Pumpenkreislauf und einen Wärmetauscher im Speicher. Der Flüssigkeitskreislauf selbst ist mit einem Frostschutzmittel versehen, um im Winter ein Einfrieren in den Kollektoren auszuschließen. Ist die Temperatur im Kollektor höher als im Speicher, wird die Pumpe über eine Temperaturdifferenz-Regelung eingeschaltet und fördert die Wärme aus den Kollektoren in den Speicher



Um die in Mitteleuropa vorkommenden längeren sonnenlosen Zeiten zu überbrücken, muss grundsätzlich eine zweite Heizquelle vorgesehen werden. Dies ist in der Regel die vorhandene Gas- oder Ölheizung. Die Nachheizung kann aber auch elektrisch, über eine Wärmepumpe oder über Fernwärme erfolgen.

Regionale Strahlungsverteilung in Deutschland



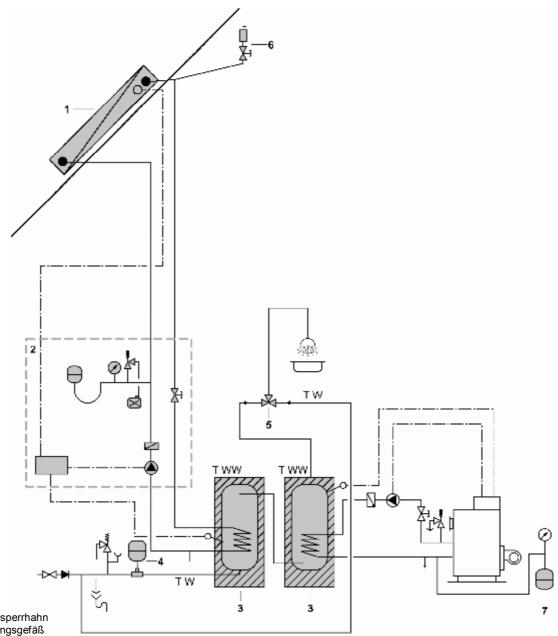
Solaranlage mit bivalentem Speicher

Solaranlage zur Trinkwassererwärmung im Ein- und Zweifamilienhaus mit bivalentem Speicher

Das ist der häufigste Anwendungsfall bei Neubauten oder im Rahmen der Heizungssanierung. Für diesen Einsatzbereich gibt es von Altech fertige Units, die bereits alle notwendigen Bauteile enthalten. Oder die Anlage wird mit Altech Komponenten individuell zusammengestellt.

Kollektorenanzahl	Speicher	Solarstation (<u>ohne</u> Ausdeh- nungsgefäß)	Regelung	Zubehör
2 – 3 Stück	WBO 300 DUO	Station 1/6	SC 1	AD-Gefäß
3 – 4 Stück	WBO 400 DUO	Station 1/6 WMZ	SC 2	
4 – 5 Stück	WBO 500 DUO			

- 1 altech Kollektor
- 2 altech Solarstation
- 3 altech Solarspeicher
- 4 Trinkwasser AD-Gefäß
- 5 Warmwassermischer
- 6 Automatik-Entlüfter mit Absperrhahn
- 7 Membran-Druckausdehnungsgefäß



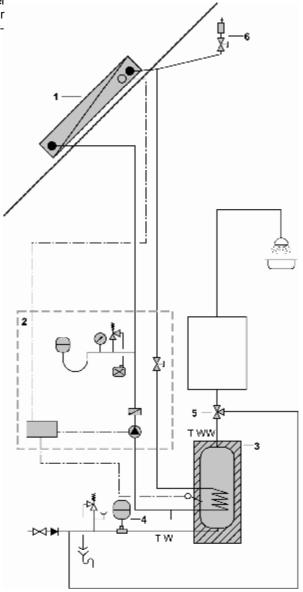
Solaranlage mit vorgeschaltetem monovalentem Speicher

Solaranlage zur Trinkwassererwärmung im Ein- und Zweifamilienhaus mit vorgeschaltetem Speicher

Diese Variante kann gewählt werden, wenn der vorhandene Kesselspeicher noch in gutem Zustand ist. Bei Kesselspeichern, deren Austausch in nächster Zeit ansteht, sollte statt des monovalenten Speichers bereits ein Speicher mit zwei Wärmetauschern eingebaut werden.

Kollektorenanzahl	Speicher	Solarstation (<u>ohne</u> Ausdeh- nungsgefäß)	Regelung	Zubehör
2 – 3 Stück	WBO 300 UNO	Station 1/6	SC 1	AD-Gefäß
3 – 4 Stück	WBO 400 UNO	Station 1/6 WMZ	SC 2	
4 – 5 Stück	WBO 500 UNO			

- 1 altech Kollektor 2 altech Solarstation
- 3 altech Speicher
- 4 Trinkwasser AD-Gefäß
- 5 Warmwassermischer
- 6 Automatik-Entlüfter mit Absperrhahn
- 7 Membran-Druckausdehnungsgefäß



Solaranlage mit Durchlauferhitzer und monovalentem Speicher

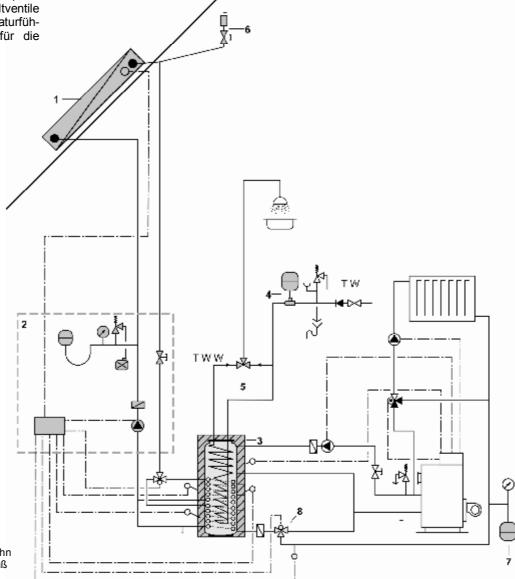
Solaranlage zur Trinkwassererwärmung im Einfamilienhaus mit monovaltentem Speicher und Durchlauferhitzer

In Wohnungen, in denen für die Trinkwasserbereitung der Einsatz eines Durchlauferhitzers ausreichend ist, kann diesem ein solarbeheizter Speicher vorgeschaltet werden. Als Speicher können sowohl monovalente Trinkwasserspeicher als auch Kombispeicher, z. B. der Altech KSW/KSV, eingesetzt werden. Bei elektrischen Durchlauferhitzern dürfen nur elektronisch geregelte Geräte verwendet werden. Informieren Sie sich beim Hersteller über die zulässigen Zulauftemperaturen (mindestens 60 °C). Bei gasbetriebenen Geräten dürfen nur modulierende Kessel verwendet werden.

Kollektorenanzahl	Speicher	Solarstation (<u>ohne</u> Ausdeh- nungsgefäß)	Regelung	Zubehör
2 – 3 Stück	WBO 300 UNO	Station 1/6	SC 1	AD-Gefäß
3 – 4 Stück	WBO 400 UNO	Station 1/6 WMZ	SC 2	
4 – 5 Stück	WBO 500 UNO			
3 – 6 Stück	KSW/KSV-2 451, 651, 801	Station 2/6	SC 3	Paket 3
6 – 10 Stück	KSW/KSV-2 901, 1051, 1301	Station 2/15	SC 3	

- 1 altech Kollektor
- 2 altech Solarstation
- 3 altech Speicher
- 4 Trinkwasser AD-Gefäß
- 5 Warmwassermischer
- 6 Automatik-Entlüfter mit Absperrhahn

Solaranlage zur Heizungsunterstützung mit Kombispeicher KSW/KSV


901, 1051,

1301

Solaranlage zur Trinkwassererwärmung und Heizungsunterstützung im Einfamilienhaus mit Kombispeicher KSW/KSV

Bei der Verschaltung eines KSW/KSV - Speichers wird für die Heizungsunterstützung ein Dreiwegeumschaltventil in den Heizungsrücklauf eingebaut. Dieses wird von der Solarangesteuert. regelung KSW/KSV - Speicher über zwei Solarwärmetauscher verfügt, können diese, zur schichtenden Beladung des Speichers, über ein Dreiwegeumschaltventil miteinander verbunden werden. Dieses Ventil wird je nach der unteren und oberen Speichertemperatur von der Solarregelung (SC 3) angesteuert. Die beiden Umschaltventile mit den notwendigen Temperaturfühlern sind als Zubehörpaket für die Station 2/-erhältlich.

Anlagenkomponenten						
Kollektorenanzahl	Speicher	Solarstation (<u>ohne</u> Ausdehnungs- gefäß)	Regelung	Zubehör		
3 – 6 Stück	KSW/KSV-2 451, 651, 801	Station 2/6	SC 3	AD-Gefäß + Paket 4/5		
6 – 10 Stück	KSW/KSV-2	Station 2/15	SC 3			

- 1 altech Kollektor
- 2 altech Solarstation
- 3 altech Kombispeicher
- 4 Trinkwasser AD-Gefäß
- 5 Warmwassermischer
- 6 Automatik-Entlüfter mit Absperrhahn
- 7 Membran-Druckausdehnungsgefäß
- 8 Dreiwegeumschaltventil

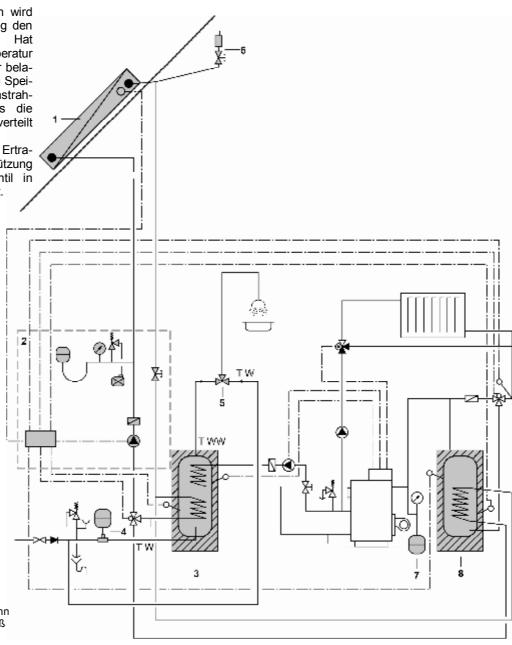
Solaranlage zur Heizungsunterstützung mit zwei Speichern

Solaranlage zur Trinkwassererwärmung und Heizungsunterstützung im Ein- und Zweifamilienhaus mit Trinkwasser- und Pufferspeicher

Alternativ zum Einsatz eines Kombispeichers können bei Anlagen mit Heizungsunterstützung Systeme mit getrennten Speichern zum Einsatz kommen. Für die Trinkwassererwärmung wird ein bivalenter Solarspeicher verwendet, für die Heizungsunterstützung ein nicht emaillierter Pufferspeicher.

Der Regler der Solarstation wird so eingestellt, dass er vorrangig den Trinkwasserspeicher erwärmt. Hat dieser die eingestellte Solltemperatur erreicht, wird der Pufferspeicher beladen. Je nach Temperatur in den Speichern und vorhandener Sonnenstrahlung wird sichergestellt, dass die vorhandene Energie optimal verteilt wird.

Zur Erzielung eines hohen Ertrages für die Heizungsunterstützung wird ein Dreiwegeumschaltventil in den Heizungsrücklauf eingebaut.


Anlagenkomponenten Kollektorenanzahl Speicher Solarstation (ohne Ausdehnungsgefäß) Regelung Zubehör 4 – 15 Stück WBO 300 DUO Station 2/6 SC 3 AD-Gefäß + Paket 4/5

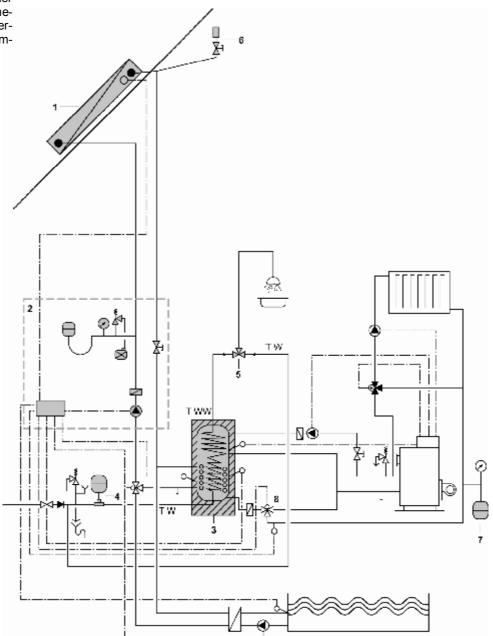
Station 2/15

SC₃

WBO 400 DUO

WBO 500 DUO

- 1 altech Kollektor
- 2 altech Solarstation
- 3 altech Solarspeicher
- 4 Trinkwasser AD-Gefäß
- 5 Warmwassermischer
- 6 Automatik-Entlüfter mit Absperrhahn
- 7 Membran-Druckausdehnungsgefäß
- 8 altech Pufferspeicher


Solaranlage mit Kombispeicher und Schwimmbad

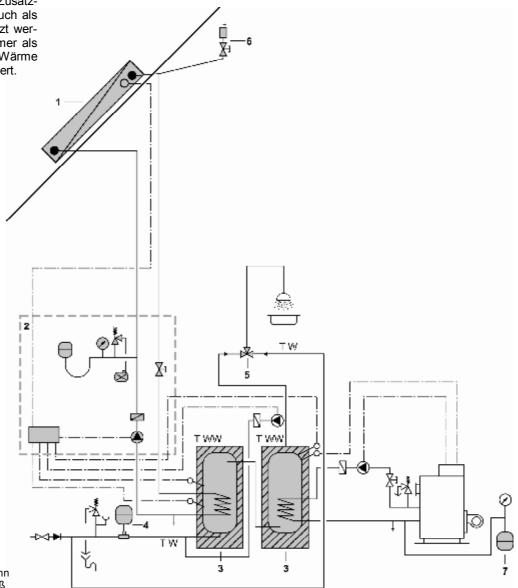
Solaranlage mit Kombispeicher und Schwimmbaderwärmung im Einund Zweifamilienhaus

Bei Solaranlagen mit Heizungsunterstützung steht im Sommer oft mehr Energie zur Verfügung, als benötigt wird. Ist ein Schwimmbad vorhanden (oder ein anderer geeigneter Verbraucher), kann diese "Überschusswärme" genutzt werden. Abweichend von Schema Seite 8, wird über den Regler parallel ein Dreiwegeumschaltventil und eine Umwälzpumpe für das Schwimmbad angesteuert. Bei der Auswahl der Pumpe und des Wärmetauschers muss darauf geachtet werden, dass diese Bauteile schwimmbadwasserbeständig sind.

An	lagen	komp	onenten
----	-------	------	---------

Kollektoren- anzahl	Speicher	Solarstation (<u>ohne</u> Ausdehnungs-gefäß)	Regelung	Zubehör
4 – 15 Stück	KSW/KSV-2 451, 651, 801	Station 2/6	SC 3	AD-Gefäß + Paket 4/5
	KSW/KSV-2 901, 1051, 1301	Station 2/15	SC 3	Schwimmbadwärmetau- scher

- 1 altech Kollektor
- 2 altech Solarstation
- 3 altech Kombispeicher
- 4 Trinkwasser AD-Gefäß
- 5 Warmwassermischer
- 6 Automatik-Entlüfter mit Absperrhahn
- 7 Membran-Druckausdehnungsgefäß
- 8 Dreiwegeumschaltventil



Solaranlage zur Trinkwassererwärmung für Mehrfamilienhäuser und andere Großverbraucher

Trinkwassererwärmung für Mehrfamilienhäuser, Hotels und andere Großverbraucher unter Berücksichtigung der DVGW-Richtlinie W 511

Trinkwasseranlagen mit mehr als 400 Litern Inhalt oberhalb des Zweifamilienhausbereichs müssen einmal am Tag auf 60 °C erhitzt werden. Um diese Forderung mit einem hohen solaren Ertrag zu kombinieren, wurde diese Systemvariante entwickelt. Über ein eingebautes Zeitfenster kann ein fester Termin für die Erwärmung des solarbeheizten Speichers auf 60 °C eingegeben werden, z.B. vor der Spitzenentnahme am Morgen. Zusätzlich kann der Kesselspeicher auch als erweiterter Solarspeicher genutzt werden. Ist der Solarspeicher wärmer als der Kesselspeicher, wird diese Wärme in den Kesselspeicher transportiert.

Kollektorenanzahl	Speicher	Solarstation (<u>ohne</u> Ausdeh- nungsgefäß)	Regelung	Zubehör
4 – 15 Stück	WBO 300 UNO	Station 2/6 plus	SC 6/plus	AD-Gefäß
	WBO 400 UNO	Station 2/15 plus	SC 6/plus	
	WBO 500 UNO			
	WBO 750 UNO			
	WBO 1000 UNO	_		_

- 1 altech Kollektor
- 2 altech Solarstation
- 3 altech Speicher
- 4 Trinkwasser AD-Gefäß
- 5 Warmwassermischer
- 6 Automatik-Entlüfter mit Absperrhahn
- 7 Membran-Druckausdehnungsgefäß

Grundsätzliches zu den hydraulischen Schaltbildern

Die hydraulischen Schaltbilder sollen zur grundsätzlichen Orientierung dienen. Sie geben schematisch die gängigsten Varianten wieder, ersetzen jedoch nicht die fachmännische Detailplanung vor Ort.

Bei der Einbindung der konventionellen Heizung beachten Sie bitte die Angaben des jeweiligen Herstellers.

In der Übersicht sind die wichtigsten Informationen zusammengefasst, die Sie bei der Planung einer Solaranlage berücksichtigen sollten.

Warmwassermischer

Bei Altech Solaranlagen kann die maximale Speichertemperatur begrenzt werden. Sollten Sie die Temperatur über 60°C einstellen, muss vor der ersten Zapfstelle ein zentraler Warmwassermischer als Verbrühungsschutz eingebaut werden.

Durchlauferhitzer und Geräte mit integrierter Trinkwassererwärmung

Die Verwendung von Durchlauferhitzern ist in Kombination mit Solaranlagen ein effizienter Anwendungsfall. Beachten Sie, dass die eingesetzten Geräte in der Lage sind, sich den schwankenden Zulauftemperaturen des "Kaltwassers" anzupassen. Sind die Geräte nur bis zu einer bestimmten Zulauftemperatur geeignet, so muss die Speichertemperatur begrenzt werden oder ein Warmwassermischer vorgeschaltet werden.

Solare Heizungsunterstützung

Um einen optimalen Ertrag bei der solaren Heizungsunterstützung zu erzielen, sollten die Heizkörper für eine möglichst niedrige Rücklauftemperatur ausgelegt werden. Beste Voraussetzung hierfür bieten Fußbodenheizungen und andere großflächige Heizkörper. Achten Sie - besonders bei Solaranlagen - auf die einwandfreie Einregulierung der Heizkörper!

Bei Heizungsanlagen mit mehreren Heizkreisen sollte möglichst der Heizkreis mit dem niedrigeren Temperaturniveau angeschlossen werden.

Zirkulationspumpen

Grundsätzlich sollte nach Möglichkeit auf Zirkulationspumpen verzichtet werden, da durch sie viel Energie verbraucht wird. Ist dies nicht möglich, so müssen die Zirkulationszeiten über eine Zeitschaltuhr auf ein Minimum reduziert werden.

Dimensionierung von Solaranlagen

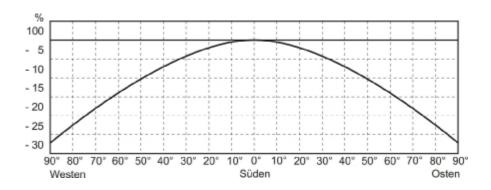
Im Gegensatz zu anderen Heizsystemen muss bei Solaranlagen berücksichtigt werden, dass die Energiequelle nicht auf Knopfdruck zur Verfügung steht. Um Ihnen trotz dieses "unzuverlässigen" Energielieferanten eine Planungssicherheit zu geben, sind im Folgenden Auslegungsgrundsätze zusammengefasst.

Solare Trinkwassererwärmung

Eine optimal ausgelegte Solaranlage ist so dimensioniert, dass sie in den Sommermonaten 100 % des Wärmebedarfes für die Trinkwassererwärmung deckt. Dies hat in der Regel eine solare Deckung von 50 bis 60 % des Gesamtwärmebedarfs für die Trinkwassererwärmung zur Folge.

Größe des Kollektorfeldes

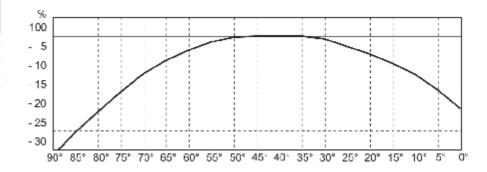
Die Größe des Kollektorfeldes richtet sich nach der Anzahl der zu versorgenden Personen.


Als Erfahrungswert gilt:

Pro zu versorgende Person wird eine Kollektorfläche von 1,0 m² bis 1,5 m² benötigt.

Diese Angabe geht von einem Warmwasserbedarf von 50 Litern mit 45 °C pro Tag und Person aus. Die Ausrichtung gilt für Kollektoren mit Südausrichtung und einem Neigungswinkel von 45°.

Auswirkung bei Abweichung von der Südausrichtung


Eine Ausrichtung nach Süden garantiert einen höchstmöglichen Kollektorertrag. Eine leichte Abweichung wirkt sich kaum auf den Ertrag aus. Die Kurve zeigt, mit welcher Minderleistung zu rechnen ist, wenn von einer exakten Südausrichtung abgewichen werden muss.

Auswirkung des Neigungswinkels auf den Ertrag der Solaranlage

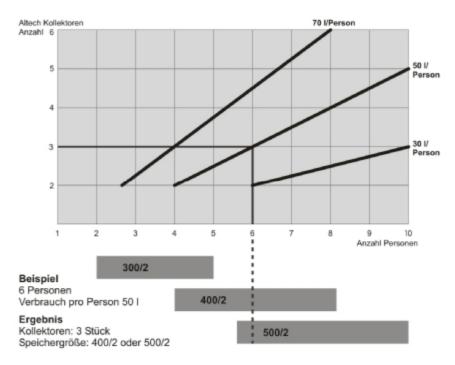
In der Regel wird der Neigungswinkel des Kollektorfeldes durch die Dachneigung vorgegeben. Die optimale Kollektorneigung in unseren Breiten beträgt 35° bis 55°.

Aber auch bei hiervon abweichenden Neigungswinkeln ist von einer Anpassung durch konstruktive Mittel abzuraten, da der Mehrertrag die dadurch verursachten Aufwendungen nicht rechtfertigt.

Bei Anlagen mit Heizungsunterstützung ist, sofern die Wahlmöglichkeit besteht, eher ein steilerer als ein flacherer Winkel zu wählen.

Dimensionierung von Solaranlagen

Größe des Solarspeichers

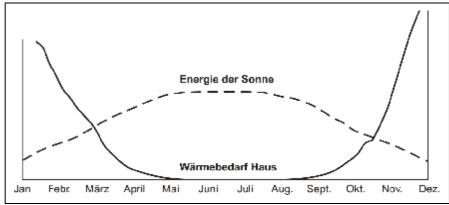

Ein solarer Trinkwasserspeicher muss zwei wesentliche Forderungen erfüllen:

- 1. Er muss die Versorgung mit warmem Trinkwasser auch bei fehlender Sonneneinstrahlung sicherstellen. Bitte berücksichtigen Sie dazu die Leistungskennzahlen.
- Das Speichervolumen muss eine ausreichende Speicherung von Solarenergie gewährleisten. Als Bezugsgröße für die Dimensionierung gilt die Größe des Kollektorfeldes:

Pro m² Kollektorfläche sollte ein Speichervolumen von 60 – 80 Litern zur Verfügung stehen.

Auslegungsdiagramm für die Dimensionierung von Solaranlagen zur Trinkwassererwärmung

Grundlage: Standort Würzburg, Südausrichtung, 45° Kollektorneigung


Solaranlagen zur Heizungsunterstützung

Durch die gestiegenen Anforderungen an die Gebäudedämmung ist der Wärmebedarf moderner Häuser in den letzten Jahren stark gesunken. Dies und der zunehmende Einsatz der Niedertemperaturheizung macht den Einsatz von thermischen Solaranlagen zur Heizungsunterstützung zu einer interessanten Alternative.

Aufgrund der Diskrepanz zwischen solarem Energieangebot und gebäudetechnischem Energiebedarf kann eine Solaranlage natürlich nur einen begrenzten Teil der benötigten Wärme liefern. Je nach Dämmstandard und Größe der Kollektorfläche kann dieser Anteil jedoch bis zu 25 % betragen. Die Faustregel gilt für Häuser mit einem Wärmebedarf von unter 75 kWh/m² im Jahr.

Pro 10 m² zu beheizenden Wohnraum wird 1 m² Kollektorfläche benötigt.

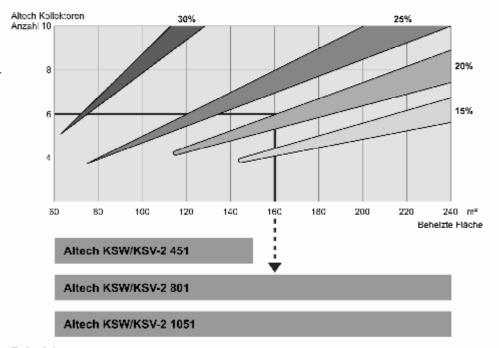
Die Ausrichtung gilt für Kollektoren mit Südausrichtung und einem Neigungswinkel von 45°.

Auswirkung bei Abweichung von der Südausrichtung

Hier gelten die gleichen Einflüsse wie bei der reinen Trinkwassererwärmung

Auswirkung des Neigungswinkels auf den Ertrag der Solaranlage

Auch hier gelten im Prinzip die gleichen Einflüsse wie bei der Trink-


wassererwärmung, jedoch sollte der Winkel nicht kleiner als 20° sein. Steile Winkel wirken sich weniger negativ aus als bei der Trinkwassererwärmung.

Dimensionierung von Solaranlagen

Auslegungsdiagramm für die Dimensionierung von Solaranlagen zur Heizungsunterstützung und Trinkwassererwärmung

Grundlage: Standort Würzburg, Südausrichtung, 75kWh/m²a

Beispiel

4 Personen 160 m² Wohnfläche

20% des Energiebedarfs soll durch die Sonne gedeckt werden

Ergebnis

Kollektoren: 6 Stück Speicher: KSW/KSV-2 801 KSW/KSV-2 1051

Komponenten des ALTECH Solarprogrammes

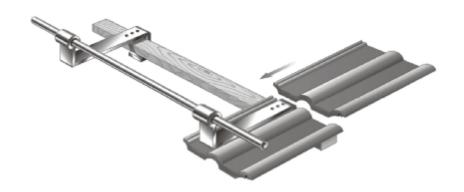
Solarkollektor

Die Altech Solarkollektoren verfügen über eine Nettoabsorberfläche von 2,14 m². Diese können senkrecht oder waagerecht montiert werden. Eine Montage ist sowohl Aufdach-, Indach- (nur senkrecht) oder Freiaufstellung möglich.

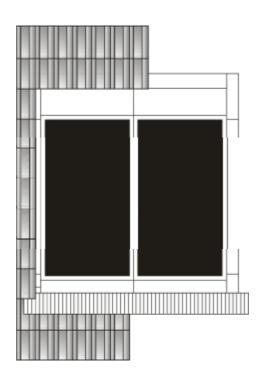
Die Kollektoren werden mit einer speziellen bläulichen Beschichtung mit Leistungsfähigkeit höchster geliefert. Besonders gut geeignet für Solaranlagen zur Heizungsunterstützung.

Die Kollektoren sind mit dem Umweltzeichen "Blauer Engel" ausgezeichnet. Dies garantiert die Verwendung von umweltfreundlichen Materialien und einen hohen Energieertrag. Darüber hinaus verpflichtet sich der Hersteller Ablauf nach der Lebensdauer Rücknahme der Kollektoren.

Typenbezeichnung	EUROTHERM FK 6240	N	
Fläche	Buttofläche Nettofläche Aperturfläche	2,36 m ² 2,14 m ² 2,17 m ²	
Abmessungen	Länge Breite Höhe	2000 mm 1180 mm 93 mm	
Gewicht		45 kg	
Absorber		mmelleitungen und Registerrohre rtverlötet und mittels Ultraschall- rberblech verschweißt 0,2 mm 18 x 1,0 mm 8 x 0,5 mm oben, ½" Außengewinde 1,5 I links oben, für 6 mm Fühler	
Beschichtung	hochselektive Vakuumb Absorbtion Emission	eschichtung 95,0 % +/-2,0 % 5,0 % +/-2,0 %	
Glasabdeckung		las (ESG) Klarglas, mit Rahmen ungsfreiem Silikon abgedichtet > 90,6 % +/-2 %	
Kollektorgehäuse	Durchführungstülle (Silo	Alu – AlMgSi 0,5 F22 dunkelbraun eloxiert Stuccoblech 0,4 mm elrohre ist eine konische pren LSR 2060 Silikon) und bildet ne thermische Trennung	
Wärmedämmung		ollplatte bzw. 20 mm starke varzem Glasvlies (ausgasungsfrei) 0,045 W/mK 50 – 80 kg/m³	
Allgemein	Stillstandstemperatur Max Betriebsdruck Wärmeträgerart	ca. 210 °C 10 bar Propylenglykol – Wasser Gemisch	
Externe Verschaltung	max. 6	Kollektoren in Reihe	
Bauartzulassung	TÜV 02 – 328 – 083		
Herstellergarantie	10 Jahre gemäß Garantiebedingungen (ohne Glas!!!)		
Bestell-Nummer		66.70.450	



Kollektorzubehör


Aufdachmontage-Set

Mit den Aufdachmontage-Sets von ALTECH lassen sich die Kollektoren auf allen gelatteten Pfannendächern montieren. Bei Dächern mit Biberschwanz- oder Schindeleindeckung sollte ein Dachdecker zu Rate gezogen werden.

Indachmontage-Set

Mit den Indachmontage-Sets von ALTECH lassen sich die Kollektoren direkt auf die Dachlattung montieren. Durch die mitgelieferten Bleche wird eine harmonische Einbindung in die Dachfläche erzielt. Bei Dächern mit Biberschwanz- oder Schindeleindeckung sollte ein Dachdecker zu Rate gezogen werden.

Freiaufstellungs-Set

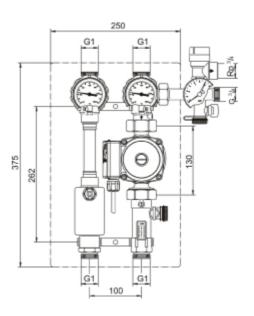
Mit den Freiaufstellungs-Sets von ALTECH lassen sich die Kollektoren auf allen ebenen Flächen (Flachdächer, im Garten etc.) montieren. Die Aufstellung mit den mitgelieferten Aluminiumprofilen kann entweder in einem 45° - Winkel oder in einem 25° - Winkel erfolgen.

Die Befestigung der Aufständerung mit dem Untergrund muss bauseitig, z. B. durch Verschraubung auf Betonplatten, erfolgen

Solarstationen

Die ALTECH Solarstationen enthalten alle für die Steuerung und Sicherheit der Solaranlage notwendigen Bauteile. Zusätzlich informieren sie über die Temperaturen in Kollektor und Speicher, die Betriebsstunden, den Druck und die Temperaturen in Vorlauf und Rücklauf.

Für jeden Anwendungsfall werden die Stationen mit den passenden Regelungen und Zubehörteilen ausgestattet.



Anwendungsfälle der Solarstationen

Station	Anwendung	max. Anzahl Kollek- toren	Pumpe	Regelung	Beispiel- schema Seite(n)	Bestell- Nummer
1/6	Anlage mit einem Speicher	6	ST 25/6	SC 1	4, 5, 6	66.84.200
1/15	Anlagen mit einem Speicher	15	ST 25/7	SC 1	4, 5, 6	66.84.210
1/6 WMZ	Anlagen mit einem Speicher und Vo- lumenstrommessteil	6	ST 25/6	SC 2	4, 5, 6	66.84.300
1/15 WMZ	Anlagen mit einem Speicher und Vo- lumenstrommessteil	15	ST 25/7	SC 2	4, 5, 6	66.84.310 66.84.311
2/6	Anlage mit 2 Spei- chern oder mit Kombispeicher KSW/KSV-2	6	ST 25/6	SC 3	6, 7, 8, 9	66.84.400
2/15	Anlage mit 2 Spei- chern oder mit Kombispeicher KSW/KSV-2	15	ST 25/7	SC 3	6, 7, 8, 9	66.84.410
2/6 plus	Anlage mit 2 Spei- chern und zeitge- steuerter Um- schichtfunktion	6	ST 25/6	SC 6/plus	10	66.84.700
2/15 plus	Anlage mit 2 Spei- chern und zeitge- steuerter Um- schichtfunktion	15	ST 25/7	SC 6/plus	10	66.84.710

Alle Solarstationen ohne MAG, mit Sicherheitsventil 6 bar

Regler

Kurzbeschreibung der eingesetzten Regler

Die Regler SC 1, SC 2, SC 3 und SC 6/plus sind mikroprozessorgesteuerte Temperaturdifferenzregler und verfügen über ein Display mit Grafiksymbolen. Sie messen permanent die Temperatur im Kollektor und vergleichen diese mit der Temperatur im Speicher. Solange die Temperatur im Kollektor höher ist als im Speicher, läuft die Pumpe und gibt die Wärme an den Speicher ab. Sinkt die Temperaturdifferenz zwischen Speicher und Kollektor unter einen eingestellten Wert, schaltet die Pumpe ab.

Alle Regler verfügen über eine Solarschutzfunktion. Bei Erreichen der eingestellten Temperatur im Kollektor läuft die Pumpe kurz an und fördert die Wärme in den Speicher. So können unnötig hohe Temperaturen im Sommer vermieden werden.

SC₁

Der Regler SC 1 ist der Grundregler auf dessen Basis die anderen Regler aufgebaut sind. Er erfüllt die wichtigsten Funktionen, die für den Betrieb von Solaranlagen zur Trinkwassererwärmung benötigt werden. Kollektortemperatur, Speichertemperatur, Betriebsstunden und der jeweilige Betriebszustand werden über das Display angezeigt.

Die Regelung verfügt über eine einstellbare Drehzahlregelung der Solarkreispumpe.

Die Temperatur des Speichers kann stufenlos von 20 °C bis 90 °C begrenzt werden.

SC₂

Der Regler SC 2 kann mit zwei zusätzlichen Fühlern und einem Volumenstrommessteil ausgestattet werden. Dies ermöglicht eine Messung des Energieertrages der Solaranlage und den Anschluss einer Boilerladepumpe zur wahlweise Nachbeheizung oder Kühlung des Solarspeichers am zweiten Schaltausgang.

Außerdem verfügt der Regler über eine zuschaltbare Röhrenkollektorfunktion, bei der im Abstand von 30 Minuten die Solarkreispumpe für 30 Sekunden eingeschaltet wird. Dies ist notwendig, um eine Änderung der Temperatur im Kollektor messen zu können, wenn regelungsbedingt für längere Zeit keine Umwälzung stattgefunden hat.

SC 3

Der Regler SC 3 verfügt über eine integrierte zweite Temperaturdifferenzregelung mit separaten Fühlereingängen und eigenem Schaltausgang. Hier kann z. B. ein Umschaltventil zur Temperaturanhebung des Heizkreisrücklaufes über einen (Kombi-) Pufferspeicher angesteuert werden.

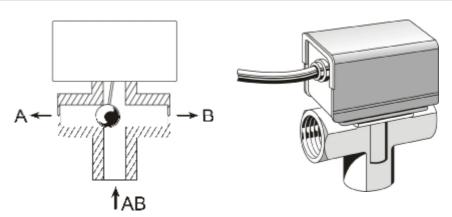
Besonders geeignet ist dieser Regler für Anlagen mit zwei Speichern oder Kombipufferspeicher mit Topladefunktion

SC 6/plus

Der Regler SC 6/plus ist mit umfangreichen Funktionen zur Regelung und Überwachung der Solaranlage ausgestattet. Mit seinen 10 Sensoreingängen und 6 Schaltausgängen ist er besonders für komplexe Solaranlagen geeignet.

Mit Hilfe der integrierten Datenschnittstelle und dem optional erhältlichen "DataStick" können Messwerte und Anlagenzustände auf Ihren Computer übertragen werden.

Regler	SC 1	SC 2	SC 3	SC 6/plus
Anzahl Sensoreingänge	2	4	6	10
Anzahl Schaltausgänge	1	2	3	6
Mögliche Temperaturanzeigen	2	4	6	10
Display mit Grafiksymbolen	Ja	Ja	Ja	Ja
Einstellbereich ΔT (ein)	3-40 K	3-40 K	6-18 K	6-18 K
Einstellbereich ΔT (aus)	2-35 K	2-35 K	2-35 K	2-35 K
Einstellbereich Speicher max.	15-95 °C	15-95 °C	15-95 °C	15-95 °C
Einstellbereich Solarschutzfunktion	110-150 °C	110-150 °C	110-150 °C	110-150 °C
Einsatzbereich				
1 Speicher, 1 Kollektorfeld	Ja	Ja	Ja	Ja
1 Speicher, 1 Kollektorfeld mit Wärmemengenerfassung (ein zusätzliches Volumenstrommess- teil wird benötigt)	Nein	Ja	Ja	Ja
Kombispeicher mit Rücklaufwächter und Topladeventil	Nein	Nein	Ja	Ja
1 Kollektorfeld, 2 (Solar-) Speicher mit Umschichtfunktion	Nein	Nein	Ja	Ja
1 Kollektorfeld, 2 Speicher* (ein zusätzliches Dreiwegeventil wird benötigt)	Nein	Nein	Ja	Ja
2 Kollektorfelder*, 1 Speicher (ein zusätzliches Dreiwegeventil wird benötigt)	Nein	Nein	Ja	Ja
2 Kollektorfelder*, 2 Speicher * (ein zusätzliches Dreiwegeventil wird benötigt)	Nein	Nein	Nein	Ja
Schutzart	IP 40	IP 40	IP 40	IP 40
Betriebsspannung	230 V ±10% 50-60 Hz			
Schaltleistung gesamt	460 VA	460 VA	460 VA	900 VA
Sensoren	PT 1000	PT 1000	PT 1000	PT 1000
Bestell-Nummer	66.87.510	66.87.540	66.87.600	66.87.750


*Wenn hier von zwei Speichern die Rede ist, so ist gemeint, dass es sich um zwei "Verbraucher" handelt. Die Speicher haben also zur selben Zeit unter Umständen unterschiedliche Temperaturen. Ist von mehreren Kollektorfeldern die Rede, so sind Kollektorfelder gemeint, die unterschiedlich ausgerichtet sind, also zur selben Zeit unterschiedliche Temperaturen aufweisen.

Regelungstechnisches Zubehör

Dreiwegeventil

Das Dreiwegeventil wird über einen 230 V – Stellmotor angetrieben. Es kann sowohl zur Ansteuerung unterschiedlicher Speicher als auch zur Ansteuerung unterschiedlicher Kollektorfelder eingesetzt werden. Bei Solaranlagen muss es grundsätzlich im Rücklauf installiert werden

Technische Daten

Anschluss	Rp ¾ oder Rp 1	Rp ¾ oder Rp 1		
Elektrischer Anschluss	230 V, 50 Hz	_		
Leistungsaufnahme	6 W			
Max. Mediumtemperatur	95 °C	_		
Montageart	Beliebig, außer Stella	ntrieb unten		
Schaltzustand stromlos	Auslass B offen	_		
Bestell-	Rp ¾	Rp 1		
Nummer	66.87.080	66.87.090		

Volumenstrommessteil

Dieses Volumenstrommessteil kann in Kombination mit den Reglern DR4 und DR5 zur Wärmemengenzählung eingesetzt werden. Das ist jedoch nur bei Anlagen möglich, die lediglich einen Speicher haben und keine weitern Pumpen oder Ventile ansteuern. In anderen Fällen muss neben dem Volumenstrommessteil auch ein Wärmemengenzähler C3 WMZ eingesetzt werden.

Technische Daten

Anschluss	R ¾ Wasserzählerverschraubung		
Einbaulänge	110 mm		
Max. Mediumtemperatur	120 °C		
Nennvolumenstrom	600l/h oder 1500 l/h		
Montageart	Senkrecht		
Bestell-	600 l/h 1500 l/h		
Nummer	66.88.400 66.88.500		

Wärmemengenzähler C3 WMZ

Mikroprozessorgesteuerter Wärmemengenzähler zur Erfassung von Wärmemengen in Solaranlagen. Kann in Kombination mit dem Volumenstrommessteil, unabhängig von der Regelung, eingesetzt werden. Bei Anlagen mit konstantem Volumenstrom kann der Regler auch ohne Volumenstrommessteil eingesetzt werden. Hierzu muss jedoch der Volumenstrom im Solarkreislauf einmalig ermittelt werden.

Bestell-Nummer: 66.88.950

Rücklaufwächter

Der Rücklaufwächter dient zur optimalen Einbindung der Heizflächen in die solare Heizungsunterstützung. Der Rücklaufwächter besteht aus einem Dreiwegeventil und einer Temperaturdifferenzregelung. Der Rücklaufwächter leitet den Volumenstrom der Heizungsanlage entweder über den Speicher oder direkt zum Kessel. So kann ein unbeabsichtigtes Aufheizen des Speichers verhindert werden.

Bestell-Nummer: 66.88.900

Dimensionierung der Ausdehnungsgefäße

Alle ALTECH Solarstationen werden standardmäßig ohne MAG aber mit einem 6 bar – Sicherheitsventil, Manometer, Panzerschlauch und Haltebügel mit ¾" Schnellverschluss für AD-Gefäße bis 33 Liter geliefert.

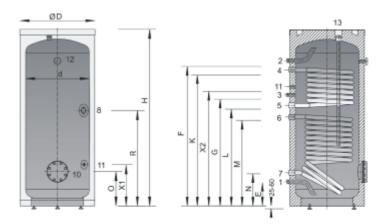
Die Größe des Ausdehnungsgefäßes richtet sich nach dem Inhalt des Solarsystems und muss individuell dimensioniert werden. Mit Hilfe der Tabelle können Sie die Größe bestimmen. Die Zahlen in den Feldern geben die benötigten Ausdehnungsgefäße der S-Reihe an.

Für noch größere Solaranlagen empfehlen sich die Ausdehnungsgefäße der Typenreihe S 60 – S 500, die für einen Anlagendruck bis 10 bar zugelassen sind.

Anzahl Kollektoren (Inhalt in I)	30 l Rohrleitungsinhalt ohne Kollektoren			40 l Rohrleitungsinhalt ohne Kollektoren		50 I Rohrleitungsinha ohne Kollektoren						
20 (24,0)			S	0								
19 (22,8)							s	80				
18 (21,6)											S	80
17 (20,4)	2 x	S 33										
16 (19,2)												
15 (18,0)						2 x	S 33					
14 (16,8)										2 x	S 33	
13 (15,6)												
12 (14,4)							l					
11 (13,2)		S 40										
10 (12,0)						S 40		l				
9 (10,8)										S 40		
8 (9,6)		S 25	Ī			I						
7 (8,4)						S 25	Ī					
6 (7,2)									S 25			
Statische Höhe	5 m	10 m	15 m	20 m	5 m	10 m	15 m	20 m	5 m	10 m	15 m	20 m

Voraussetzung: Sicherheitsventil 6 bar

ALTECH Solarspeicher


ALTECH Solarspeicher für die Trinkwassererwärmung

Die ALTECH Solarspeicher verfügen über zwei Wärmetauscher: einen Solarwärmetauscher im unteren Bereich und einen Wärmetauscher für die Nachheizung. Auf Wunsch kann der obere Bereich auch durch einen Elektro-Einschraubheizkörper aufgeheizt werden.

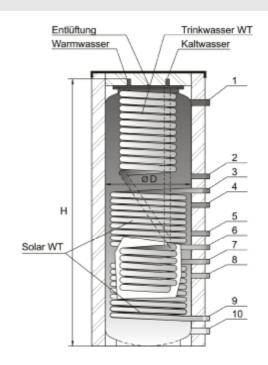
Alle Speicher sind innen emailliert und zusätzlich durch eine Magnesiumanode vor Korrosion geschützt. Neben der Dämmschicht aus Polyurethan verfügen alle Speicher über einen zusätzlichen farbigen Folienmantel zum optimalen Schutz vor Wärmeverlusten.

Ab 750 Liter verfügen die Speicher über eine FCKW-freie, abnehmbare Weichschaumisolierung mit Folienverkleidung und Correx-Fremdstromanode.

Für den Solar- und den Kesselfühler sind bereits zwei Tauchhülsen eingeschweißt.

Speichertyp		WBO 302 DUO	WBO 403 DUO	WBO 502 DUO	WBO 753 DUO	WBO 1000 DUO	WBO 1502 DUO
Speicherinhalt	Liter ca.	302	390	480	730	1000	1500
Leistungskennzahl N _L	WT unten	9,8	14,5	18,5	24	30	42
nach DIN 4708	WT oben	3,5	4,5	5,5	9	13	17
Dauerleistung Warmwasser	WT unten I/h (kW)	1220 (49,6)	1340 (54,5)	1746 (71)	2160 (88,8)	2420 (98,5)	3260 (132)
45 °C / 90 °C	WT oben I/h (kW)	742 (30,2)	778 (31,6)	1100 (44,7)	1620 (65,9)	1630 (66,3)	1020 (59,3)
Dauerleistung Warmwasser	WT unten I/h (kW)	725 (42,1)	800 (46,5)	1036 (60,2)	1290 (75,0)	1440 (92,1)	1950 (113)
60 °C / 90 °C	WT oben I/h (kW)	440 (25,5)	465 (27)	660 (38,3)	965 (56,1)	970 (56,4)	
Max. Heizflächenleistung	WT unten kW	50	55	71	88	99	97
	WT oben kW	31	32	45	66	66	56
Max. zul. Temperatur BW / HZ	°C	95 / 160	95 / 160	95 / 160	95 / 160	95 / 160	95 / 160
Max. zul. Überdruck BW / HZ	bar	10 / 16	10 / 16	10 / 16	10 / 16	10 / 16	10 / 16
Inhalt Wärmetauscher	WT unten I	8,6	10,5	14	18	24	31
	WT oben I	5,7	5,9	7,4	12,5	16	17
Wärmetauscherfläche	WT unten m²	1,45	1.64	2,1	2,7	2,9	3,7
	WT oben m²	0.85	0.9	1.3	1,9	1,9	2.0
Heizwasserbedarf	WT unten m³/h	2.5	2,5	3	3,7	5	5
	WT oben m³/h	2	2	2,5	3,7	4	4
Druckverlust Wärmetauscher	WT unten mbar	139	146	277	340	245	285
Diackveriust Warmetausener	WT oben mbar	55	84	105	280	110	97
Isolierung	mm	55-PUR	55-PUR	55-PUR	100-WS	100-WS	100-WS
Bereitschaftswärmeaufwand	kW/24h	1,9	2,4	2,7	3,9	4,4	4,9
Durchmesser mit Isolierung	D mm	660	710	710	950	1100	1200
Durchmesser Behälter		550	600	600	750	900	1000
Höhe KW-Anschluß		215	250	252	280	180	340
Höhe WW-Anschluß							
		1265	1420	1722	1610	1760	1710
Höhe Zirkulation	G mm	965	1025	1172	1230	1060	1315
Gerätehöhe	H mm	1550	1700	1980	1980	2000	2150
Höhe Heizungsvorlauf	K mm	1185	1225	1572	1485	1487	1605
Höhe Heizungsrücklauf	L mm	875	925	1072	1035	1102	1215
Höhe Solarvorlauf	M mm	775	825	902	930	950	1110
Höhe Solarrücklauf	N mm	290	330	330	280	320	395
Höhe Flansch	O mm	300	335	337	400	447	440
Höhe E-Muffe	R mm	830	875	987	980	1040	1150
Kippmaß	mm	1680	1840	2100	1980	2000	2190
Höhe Reglermuffe 1	X1 mm	360	395	397	-	-	-
Höhe Reglermuffe 2	X2 mm	1035	1115	1322	-		-
Anschlüsse							
Kaltwasser / Warmwasser	1/2 R	1	1	1	1 1/4	1 ½	2
Zirkulation	3 R	3/4	3/4	3/4	3/4	3/4	1
Heizungsvorlauf / -rücklauf	4/5 Rp	1	1	1	1	1 1/4	1 1/4
Solarvorlauf / -rücklauf	6/7 Rp	1	1	1	1	1 1/4	1 1/4
E-Muffe	8 Rp	1 ½	1 ½	1 ½	1 ½	1 ½	1 ½
Entlüftung (ab WBO 753 DUO)	Rp	-	-	-	1/2	1/2	2
Flansch	10 NW	116	116	116	205	205	280
Fühlerhülse	11 Rp	1/2	1/2	1/2	-	-	-
Thermometer(muffe)	12 Rp	1/2	1/2	1/2	1/2	1/2	1/2
Anode	13 Rp	1	1	1 1/4	1 1/4	1 1/4	1 1/4
Gewicht (leer)	kg	145	187	215	270	370	485
Bestell-Nummer Folienmantel		66.79.300	66.79.400	66.79.500	-		-
Bestell-Nummer Folienmantel		66.79.330	66.79.430	66.79.530	66.79.800	66.79.960	66.79.970
Doctor-Hummer i Offermanter		00.7 3.000	00.73.400	00.7 0.000	00.1 0.000	00.13.300	00.13.310

Kombispeicher KSW


Kombispeicher KSW für die Trinkwassererwärmung und Heizungsunterstützung

Der KSW - Speicher verfügt über einen internen Warmwasser-Wärmetauscher. Dieser Wärmetauscher besteht aus Edelstahl-Wellrohr und ist deshalb besonders für Regionen geeignet, in denen Rohrleitungen aus Kupfer nicht zugelassen sind.

Außerdem verfügt der KSW – Speicher über zwei Solarwärmetauscher, welche z. B. auch mittels eines externen Umschaltventils (ist als Zubehör für die ALTECH Solarstation 2/- erhältlich) zur Schichtenladung verwendet werden können

Durch die zahlreichen Anschlüsse am Speicher ergeben sich viele Möglichkeiten der Einbindung zusätzlicher Wärmequellen.

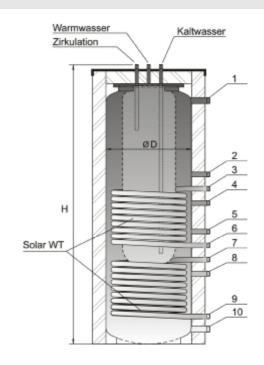
Der Speicher wird mit einer FCKWfreien Weichschaumisolierung mit PVC-Deckschicht geliefert. Die Isolierung ist als Sonderzubehör (Mehrpreis) mit Polystyrolmantel lieferbar.

Speichertyp		KSW-2 451	KSW-2 651	KSW-2 801	KSW-2 901	KSW-2 1051	KSW-2 1301
Nenninhalt	Heizwasser Liter	450	650	800	900	1050	1300
	Trinkwasser Liter	DE*	DE*	DE*	DE*	DE*	DE*
Durchmesser Ø D mm	ohne Isolierung	600	700	790	790	900	900
	mit Isolierung	800	900	990	990	1100	1100
Höhe	H mm	1885	1895	1945	2115	1925	2355
Kippmaß	mm	2000	2005	2060	2230	2050	2470
Gewicht	Kg	193	218	268	283	316	348
Heizfläche	Warmwasser m ²	5	5	5	5	5	5
	2 x Solar je m²	1,6	2,0	2,4	2,6	2,9	3,3
	Solar-WT-Inhalt je	9,6	12,0	14,5	15,7	17,5	20,0
Warmwasser	G	3/4	3/4	3/4	3/4	3/4	3/4
Kaltwasser	G	3/4	3/4	3/4	3/4	3/4	3/4
Anschlusshöhe mm	1 R 1¼"	1715	1720	1745	1930	1730	2150
	2 R 1"	1195	1200	1265	1360	1250	1470
	3 R 1"	1095	1100	1165	1245	1150	1350
	4 R 1"	995	1000	1060	1130	1045	1220
	5 R 1"	795	800	850	900	835	960
	6 R 1"	695	700	745	785	730	830
	7 R 1"	595	600	645	685	630	730
	8 R 1"	495	500	540	570	525	600
	9 R 1"	195	200	225	225	210	210
	10 R 1¼"	105	110	125	125	110	110
Leistungskennzahl N _L 1)		1,7	2,2	2,5	2,9	3,4	3,6
Temperaturfühler			variabel pos	sitionierbar durch F	ühlerklemmleiste a	am Speicher	
max. Betriebsdruck	Heizwasser			3	bar		
	Trinkwasser			Δ _P 3 bar (Heizwa	sser/Trinkwasser)		
	Solarkreise			16	bar		
max. Betriebstemperatur	Heizwasser			95	°C		
	Trinkwasser			95	°C		
	Solarkreise			110) °C		
Bestell-Nummer		66.80.300	66.80.400	66.80.500	66.80.600	66.80.700	66.80.800
Polystyrol-Isolierung	(im Austausch)	66.80.900	66.80.910	66.80.920	66.80.930	66.80.940	66.80.950

Durchlauferhitzer

Ab einem Speicher-Gesamtvolumen von 800 Litern ist in Höhe des Stutzen 2, 30° versetzt, serienmäßig eine 1 $\frac{1}{2}^{\circ}$ Muffe angebracht. Diese kann z. B. zur Installation einer E-Heizung verwendet werden.

¹⁾ $t_{KW} = 10 \,^{\circ}\text{C}, t_{WW} = 45 \,^{\circ}\text{C}, t_{HV} = 80 \,^{\circ}\text{C}$


Kombispeicher KSV

Kombispeicher KSV für die Trinkwassererwärmung und Heizungsunterstützung

Der Grundkörper mit den zwei eingeschweißten Solarwärmetauschern ist der gleiche wie beim KSW – Speicher. Jedoch ist beim KSV – Speicher anstatt eines Edelstahl-Wellrohrtauschers für die Warmwasserbereitung hier ein Edelstahlwarmwassertank eingeflanscht.

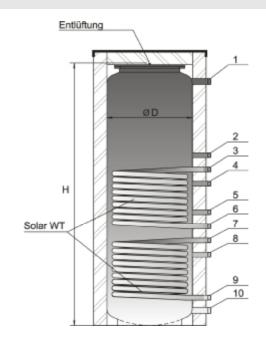
Diese Version ist zu empfehlen, wenn z. B. als zusätzliche Wärmequelle eine Wärmepumpe eingesetzt wird.

Der Speicher wird ebenfalls mit einer FCKW-freien Weichschaumisolierung mit PVC-Deckschicht geliefert. Die Isolierung ist als Sonderzubehör (Mehrpreis) mit Polystyrolmantel lieferbar.

Speichertyp		KSV-2 451	KSV-2 651	KSV-2 801	KSV-2 901	KSV-2 1051	KSV-2 1301
Nenninhalt	Heizwasser Liter	250	450	600	700	850	1100
	Trinkwasser Liter	200	200	200	200	200	200
Durchmesser Ø D mm	ohne Isolierung	600	700	790	790	900	900
	mit Isolierung	800	900	990	990	1100	1100
Höhe	H mm	1960	1970	2020	2190	2000	2430
Kippmaß	mm	2000	2005	2060	2230	2050	2470
Gewicht	Kg	215	240	290	305	338	370
Heizfläche	2 x Solar je m²	1,6	2,0	2,4	2,6	2,9	3,3
	Solar-WT-Inhalt je	9,6	12,0	14,4	15,7	17,5	20,0
Warmwasser	G	3/4	3/4	3/4	3/4	3/4	3/4
Kaltwasser	G	3/4	3/4	3/4	3/4	3/4	3/4
Zirkulation	G	3/4	3/4	3/4	3/4	3/4	3/4
Anschlusshöhe mm	1 R 1¼"	1715	1720	1745	1930	1730	2150
	2 R 1"	1195	1200	1265	1360	1250	1470
	3 R 1"	1095	1100	1165	1245	1150	1350
	4 R 1"	995	1000	1060	1130	1045	1220
	5 R 1"	795	800	850	900	835	960
	6 R 1"	695	700	745	785	730	830
	7 R 1"	595	600	645	685	630	730
	8 R 1"	495	500	540	570	525	600
	9 R 1"	195	200	225	225	210	210
	10 R 1¼"	105	110	125	125	110	110
Leistungskennzahl N _L 1)		1,3	1,8	2,1	2,5	3,0	3,2
Temperaturfühler			variabel pos	sitionierbar durch F	ühlerklemmleiste	am Speicher	
max. Betriebsdruck	Heizwasser				bar		
	Trinkwasser			10	bar		
	Solarkreise			16	bar		
max. Betriebstemperatur	Heizwasser			95	°C		
	Trinkwasser	95 °C					
	Solarkreise			110	O °C		
Bestell-Nummer		66.80.310	66.80.410	66.80.510	66.80.610	66.80.710	66.80.810
Polystyrol-Isolierung	(im Austausch)	66.80.900	66.80.910	66.80.920	66.80.930	66.80.940	66.80.950

¹⁾ $t_{KW} = 10 \, ^{\circ}\text{C}, \, t_{WW} = 45 \, ^{\circ}\text{C}, \, t_{HV} = 80 \, ^{\circ}\text{C}$

Ab einem Speicher-Gesamtvolumen von 800 Litern ist in Höhe des Stutzen 2, 30° versetzt, serienmäßig eine 1 ½" Muffe angebracht. Diese kann z. B. zur Installation einer E-Heizung verwendet werden.


Pufferspeicher KSP

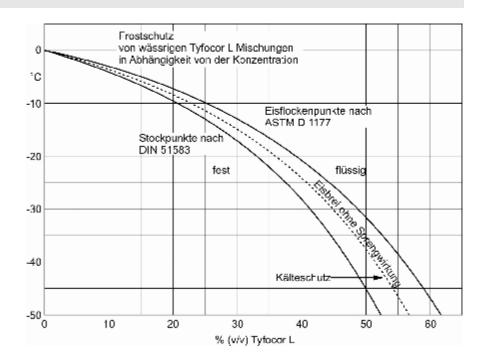
Pufferspeicher KSP für die Heizungsunterstützung

Der Grundkörper mit den zwei eingeschweißten Solarwärmetauschern ist der gleiche wie beim KSW – und beim KSV - Speicher. Jedoch ist der KSP – Speicher ein reiner Pufferspeicher ohne Warmwasserbereitung.

Bei Bedarf kann der Speicher jederzeit mit einem Edelstahl-Wellrohrwärmetauscher oder einem Edelstahltank zum Kombispeicher umfunktioniert werden.

Der Speicher wird ebenfalls mit einer FCKW-freien Weichschaumisolierung mit PVC-Deckschicht geliefert. Die Isolierung ist als Sonderzubehör (Mehrpreis) mit Polystyrolmantel lieferbar.

Speichertyp		KSP-2 451	KSP-2 651	KSP-2 801	KSP-2 901	KSP-2 1051	KSP-2 1301
Nenninhalt	Liter	450	650	800	900	1050	1300
Durchmesser Ø D mm	ohne Isolierung	600	700	790	790	900	900
	mit Isolierung	800	900	990	990	1100	1100
Höhe	H mm	1885	1895	1945	2115	1925	2355
Kippmaß	Mm	2000	2005	2060	2230	2050	2470
Gewicht	Kg	166	185	235	250	283	315
Heizfläche	2 x Solar je m²	1,6	2,0	2,4	2,6	2,9	3,3
	Solar-WT-Inhalt je	9,6	12,0	14,5	15,7	17,5	20,0
Anschlusshöhe mm	1 R 1¼"	1715	1720	1745	1930	1730	2150
	2 R 1"	1195	1200	1265	1360	1250	1470
	3 R 1"	1095	1100	1165	1245	1150	1350
	4 R 1"	995	1000	1060	1130	1045	1220
	5 R 1"	795	800	850	900	835	960
	6 R 1"	695	700	745	785	730	830
	7 R 1"	595	600	645	685	630	730
	8 R 1"	495	500	540	570	525	600
	9 R 1"	195	200	225	225	210	210
	10 R 1¼"	105	110	125	125	110	110
Temperaturfühler			variabel pos	sitionierbar durch f	Fühlerklemmleiste a	am Speicher	
max. Betriebsdruck	Heizwasser			3	bar		
	Solarkreise			16	bar		
max. Betriebstemperatur	Heizwasser			95	S°C		
	Solarkreise			110	0 °C		
Bestell-Nummer		66.80.320	66.80.420	66.80.520	66.80.620	66.80.720	66.80.820
Polystyrol-Isolierung	(im Austausch)	66.80.900	66.80.910	66.80.920	66.80.930	66.80.940	66.80.950


Ab einem Speicher-Gesamtvolumen von 800 Litern ist in Höhe des Stutzen 2, 30° versetzt, serienmäßig eine 1 ½" Muffe angebracht. Diese kann z. B. zur Installation einer E-Heizung verwendet werden.

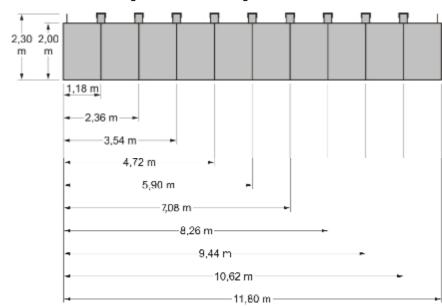
Solarzubehör

Frostschutzmittel

Alle ALTECH Solaranlagen werden mit einem Frostschutzmittel (Tyfocor L) gefüllt. Das Mischungsverhältins sollte zwischen 50%/50% und 60%/40% (Wasser/Tyfocor L) liegen. ALTECH liefert das Frostschutzmittel als 10-l-Gebinde in unverdünntem Zustand (Konzentrat).

Planungshinweise für die Montage

Benötigte Fläche für die Kollektorfelder

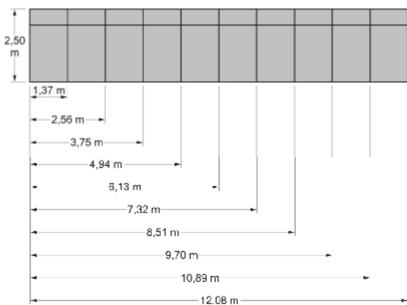

Vor der Installation der Kollektoren müssen die räumlichen Gegebenheiten überprüft werden. Wichtigster Punkt ist hier, ob die vorhandene Fläche die benötigten Kollektoren aufnehmen kann.

Die nachfolgenden Skizzen stellen die benötigte Fläche für die Kollektoren dar. Zusätzlich sollte rechts und links vom Kollektorfeld mindestens jeweils 50 cm Platz für die Rohrleitungen berücksichtigt werden. Besonderes Augenmerk muss hier auf Dachüberstände gelegt werden, da dort oft keine Rohrleitungen verlegt werden können oder sollen.

Oberhalb des Kollektorfeldes sollten mindestens 20 cm für die Verbindungsleitungen berücksichtigt werden.

Aufdachmontage und Freiaufstellung

Maße für Aufdachmontage und Freiaufstellung



Bei der Indachmontage muss zusätzlich der Platzbedarf für die Blecheindeckung berücksichtigt werden. Durch die Abdichtung der Kollektorzwischenräume ergibt sich eine etwas größere Breite des Feldes.

Berücksichtigen Sie, dass zu allen Seiten noch mindestens Platz für zwei Dachziegelreihen benötigt wird. Anderenfalls ist eine Abdichtung des Daches nicht möglich.

Indachmontage

Benötigte Fläche für die Dachintegration

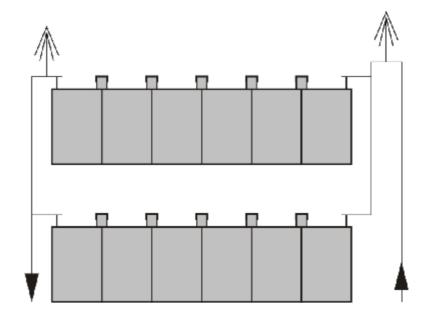
Entlüftung des Kollektorfeldes

Um eine einwandfreie Entlüftung des Kollektorfeldes zu gewährleisten, muss am höchsten Punkt des Rohrleitungssystems (vorzugsweise am Anschluss des

installiert werden.

Hier dürfen nur Entlüfter mit Ganzmetall-Schwimmer eingesetzt werden. Der Entlüfter muss absperrbar (Kugelhahn)

Vorlaufes) ein automatischer Entlüfter installiert werden. So kann der Entlüfter jederzeit verschlossen bzw. gereinigt oder bei Bedarf ausgetauscht werden.



Planungshinweise für die Montage

Schaltung mehrerer Kollektoren

Grundsätzlich empfehlen wir, nicht mehr als 6 Kollektoren in Reihe zu schal-

Bei größeren Feldern sollten die einzelnen Felder parallel geschaltet werden.

Dimensionierung und Dämmung der Rohrleitungen

Als Rohrleitungen für Solaranlagen sollte grundsätzlich Kupferrohr oder Solar-Edelstahlwellrohr verwendet werden. Der Einsatz von Kunststoffleitungen ist nicht zu empfehlen. Als Verbindungstechnik kann sowohl weich- als auch hartgelötet werden. Bei Verwendung von Pressfittings muss mit dem Hersteller die Tauglichkeit für Solaranlagen geklärt werden.

Der Durchmesser der zu wählenden Rohrleitung ist abhängig von der Pumpenleistung, der Größe des Kollektorfeldes und der Länge der Rohrleitungen.

Zur Orientierung gelten folgende Werte:

Gesamtlänge der Rohrleitung	bis 10 m	bis 25 m	bis 35 m
2 – 3 Kollektoren	15 mm	18 mm	18 mm
3 – 6 Kollektoren	18 mm	18 mm	22 mm
6 – 15 Kollektoren	22 mm	22 mm	28 mm

Es ist darauf zu achten, dass nur hochtemperaturbeständiges Dämmma- schluss- und Verbindungsleitungen terial verwendet wird. Alle Leitungen, sind bereits entsprechend gedämmt. die im Außenbereich verlegt werden, sollten zusätzlich UV-beständig sein.

Die von ALTECH mitgelieferten An-

Sicherheitsdatenblatt Tyfocor® L

EG - SICHERHEITSDATENBLATT

gam. 91/155/EWG, RL 2001/58/EG Überarbeitet am 02:07:03 Druckdatum: 01:08:03

Blatt 01 von 04

1. Stoff-/Zubereitungs- und Firmenbezeichnung

TYFOCOR* L

TYFOROP Chemie GmbH, Hellbrookstraße 5a, 22305 Hamburg Tel.: 040-61 21 69 und 61 40 39; Fax: 040-61 52 99; e-mail: info@tyfo.de

Notfallauskunft: 040-61 40 39, in der Zeit von 18-8 Uhr: 0621-43333

2. Zusammensetzung / Angaben zu Bestandteilen

Chemische Charakterisierung

1,2-Propylenglykol mit Korrosionsinhibitoren. CAS-Nr.: 57-55-6

3. Mögliche Gefahren

Besondere Gefahrenhinweise für Mensch und Umwelt: Keine besonderen Gefahren bekannt

Allgemeine Hinweise: Verunreinigte Kleidung entfernen.

Nach Einatmen: Bei Beschwerden nach Einatmen von Dampf/Aerosol:

Nach Hautkontakt: Mit Wasser und Seife abwaschen

Mindestens 15 Minuten bei gespreizten Lidern unter fließendem Wasser gründlich ausspülen. Nach Augenkontakt:

Nach Verschlucken: Mund ausspülen und reichlich Wasser nachtrinken.

Hinweise für den Arzt: Symptomatische Behandlung (Dekontamination, Vital-funktionen), kein spezifisches Antidot bekannt.

5. Maßnahmen zur Brandbekämpfung

Geeignete Löschmittel: Sprühwasser, Trockenlöschmittel, alkoholbeständiger

Schaum, Kohlendioxid (CO₂)

Besondere Gefährdungen: gesundheitsschädliche Dämpfe. Entwicklung von Rauch/

Nebel. Die genannten Stoffe/Stoffgruppen können bei

einem Brand freigesetzt werden. Im Brandfall umluftunabhängiges Atemschutzgerät tragen

Besondere Schutz-ausrüstung:

Weitere Angaben: Gefährdung hängt von den verbrennenden Stoffen und den

Brandbedingungen ab. Kontaminiertes Löschwasser muß entsprechend den örtlichen behördlichen Vorschriften ent-

sorgt werden.

Druckdatum: 01.08.03 Blatt 02 von 04 Überarbeitet am 02.07.03

6. Maßnahmen bei unbeabsichtigter Freisetzung

Personenbezogene Vorsichtsmaßnahmen:

Persönliche Schutzkleidung verwenden.

Umweltschutzmaß-

Verunreinigtes Wasser/Löschwasser zurückhalten. Nicht in die Kanalisation/Oberflächerwasser/Grundwasser gelangen lassen

Verfahren zur Reinigung/Aufnahme:

Ausgelaufenes Material eindämmen und mit großen Mengen

Ausgelaufenes Material eindämmen und mit großen Mengen Sand, Erde oder anderem absorbierender Material abdecker; dann zur Förderung der Absorption kräftig zusammenkehren. Das Gemisch in Behälter oder Plastiksäcke füllen und der Ein-sorgung zuführen. Kleine Mengen (Spritzer) mit viel Wasser fortspülen. Für große Mengen: Produkt abpumpen, sammeln und der Entsorgung zuführen. Bei größeren Mengen, die in die Drainage oder Gewässer laufen könnten, zuständige Wasserbehörde informieren.

7. Handhabung und Lagerung

Lagerung:

Gute Be- und Entlüftung von Lager- und Arbeitsplatz.

Maßnahmen gegen elektrostatische Aufladungen treffen. Elektrische Betriebsmittel müssen für die Temperaturklasse Brand- u. Explosionsschutz:

T2 (VDE 0165) geeignet sein (D). Durch Hitze gefährdete Behälter mit Wasser kühlen.

Produkt ist hygroskopisch. Behälter dicht geschlossen an einem trockenen Ort aufbewahren. Die Lagerung in verzinkten Behältern

wird nicht empfohlen.

8. Expositionsbegrenzung und persönliche Schutzausrüstungen

Persönliche Schutzausrüstung

Atemschutz: geeigneter Atemschutz bei höheren Konzentrationen oder längerer Einwirkung: Gasfiltergerät EN 141 Typ A (organi-sche Gase/Dämpfe (Siedepunkt > 65 °C)).

Handschutz: Chemikalienbeständige Schutzhandschuhe (EN 374)

empfohlen: Nitrilkautschuk (NBR) Schutzindex 6. Wegen großer Typenvielfalt sind die Gebrauchsar der Hersteller zu beachten.

Augenschutz: Schutzbrille mit Seitenschutz (Gestellbrille) (EN 166)

Allgemeine Schutz- u. Die beim Umgang mit Chemikalien üblichen Vorsichtsmaß-

Hygienemaßnahmen: nahmen sind zu beachten.

9. Physikalische und chemische Eigenschaften

Form: Farbe: Geruch: pH-Wert (500 g/l, 20 °C):

(ASTM D 1287) < -50 °C > 150 °C (DIN 51583) (ASTM D 1120)

Sicherheitsdatenblatt Tyfocor® L

TYFOROP EG-Sicherheitsdatenbla Produkt: TYFOCOR® L	t O	berarbeitet am 02.07.03	Druckdatum: 01.08.03 Blatt 03 von 04		
9. Physikalische und chem	ische Eigenschaft	ten (Fortsetzung)			
Flammpunkt: Untere Explosionsgrenze:	> 100 °C 2.6 Val-%	(DIN 51758)			
Obere Explosionsgrenze: Zündtemperatur:	12.6 Vol% > 200 °C	(DIN 51794)			
Dampfdruck (20° C): Dichte (20°C): Löslichkeit in Wasser:	2 mbar 1.06 g/cm ⁵ vollständig löslich	(DIN 51757)			
Löslichkeit in anderen Lösungsmitteln: Viskosität, kinemat. (20 °C):	löslich in polaren Lös ca. 70 mm²/s	ungsmitteln (DIN 51582)			
10. Stabilität und Reaktivitä	it				
Zu vermeidende Stoffe:	Starke Oxidationsn	nittel.			
Gefährliche Reaktionen:		Reaktionen, wenn die Vo ung und Umgang beachte			
Gefährliche Zersetzungs- produkte:	Keine gefährlichen Zersetzungsprodukte, wenn die Vorschrif- ten/Hinweise für Lagerung und Umgang beachtet werden.				
11. Angaben zur Toxikolog	ie				
LD _{to} /oral/Ratte: >2000 mg/kg Primäre Hautreizung/Kaninch Primäre Schleimhautreizungk	en: Nicht reizend (O		404).		
Zusätzliche Hinweise:		nicht geprüft. Die Aussa; Einzelkomponenten abge			
12. Angaben zur Ökologie					
Okotoxizit#I:	Aquatische Inverte Wasserpflanzen: E Mikroorganismen/v > 1000 mg/l. Bei sa trationen in adaptie	orhynchus mykiss/LC50 (8 braten: EC50 (48 h): > 10 IC50 (72 h): > 100 mg/l Virkung suf Betebtschlam schgemäßer Einleitung ge rite biologische Kläranlagi vität von Belebtschlamm n	0 mg/l m: DEV-L2 ringer Konzen- an sind Störun-		
Beurteilung aquatische Toxizität:		nicht geprüft. Die Aussag Einzelkomponenten abge			
Persistenz und Abbaubarkeit:	Analysenmethode: Eliminationsgrad:	OECD 301A (neue Versio DOC-Abnahme	n)		
Zusätzliche Hinweise:		logische Hinweise: Produ Gewässer gelangen lasse			

Druckdatum: 01.08.03 Blatt 04 von 04 Überarbeitet am 02.07.03

13. Hinweise zur Entsorgung

TYFOCOR® L muß unter Beachtung der örtlichen Vorschriften z. B. einer geeigneten Deponie oder einer geeigneten Verbrennungsanlage zugeführt werden. Bei Mengen unter 100 i mit der örtlichen Stadtreinigung bzw. mit dem Umweltmobil in Verbindung setzen.

Ungereinigte Verpackung: Nicht kontaminierte Verpackungen k\u00fcnnen wieder verwendet werden. Nicht reinigungsf\u00e4hige Verpackungen sind wie der Stoff zu entsorgen.

14. Angaben zum Transport

Kein Gefahrgut im Sinne der Transportvorschriften. (ADR RID ADNR IMDG/GGVSee ICAO/IATA)

15. Vorschriften

Vorschriften der Europäischen Union (Kennzeichnung) / Nationale Vorschriften:

Nicht kennzeichnungspflichtig.

Sonstige Vorschriften: Wassergefährdungsklasse WGK 1:

schwach wassergefährdend (Deutschland, VwVwS vom 17.05.1999).

16. Sonstige Angaben

Alle Angaben, die sich im Vergleich zur vorangegangenen Ausgabe geändert haben, sind durch einen senkrechten Strich am linken Rand der betreffenden Passage gekennzeichnet. Ältere Ausgaben verlieren damit ihre Gülfligkeit.

Autere Ausgaben verteren damit inre Güngkeit.

Das Sicherheitsdatenblatt ist dazu bestimmt, die beim Umgang mit chemischen Stoffen und Zubereitungen wesenflichen physikalischen, sicherheitsbechnischen, toxkologischen u. ökologischen Daten zu vermittein, sowie Empfehlungen für den sicheren Umgang bzw. Lagerung, Handhabung und Transport zu geben. Eine Haftung für Schäden im Zusammenhag mit der Verwendung dieser Information oder dem Gebrauch, der Anwendung, Anpassung oder Verarbeitung der hierin beschriebenen Produkte ist ausgeschlossen. Dies gilt nicht, soweit wir, unsere gesetzlichen Vertreter oder Erfüllungsgehlfen bei Vorsatz oder grober Fahrlässigkeit zwingend haften. Die Haftung für mittelbare Schäden ist ausgeschlossen.

Diese Angaben sind nach bestem Wissen und Gewissen angefertigt und entsprechen un-serem aktuellen Kenntnisstand. Sie enthalten keine Zusicherung von Produkteigenschaften.

Datenblatt ausstellender Bereich: Abt. AT, Tel.: 040-61 40 39

Nachweis des Mindestertrages

Fraunhofer Institut Solare Energiesysteme

Nachweis eines Kollektormindestertrags

entsprechend den Richtlinien des Bundesministeriums für Wirtschaft und Technologie zur Förderung von Maßnahmen zur Nutzung erneuerbarer Energien vom 20. August 1999 sowie

entsprechend den Richtlinien des Landesinstituts für Bauwesen NRW über die Gewährung von Zuwendungen aus dem Programm Rationelle Energieverwendung und Nutzung unerschöpflicher Energiequellen (REN-Programm) vom 28.11.1997 - II B 6-950.50.

Für Sonnenkollektoren mit der Vertriebsbezeichnung:

EUROTHERM FK 6240N Bauform: Flachkollektor

der Firma:

ALTECH – Gesellschaft für alternative Energietechnik mbH

Am Mutterberg 4-6 D - 97833 Frammersbach Tel: 09355 - 998 - 34

Fax: 09355 - 998 - 36 E-mail: info@altech.de

wurde eine Nachweisrechnung entsprechend der beim DFS (Deutscher Fachverband Solarenergie e.V.) hinterlegten "Empfehlung zum Nachweis eines Kollektormindestertrags" vom 30.11.95 durchgeführt, bzw. die Anwendbarkeit einer entsprechenden Nachweisrechnung festgestellt.

Der Nachweis basiert auf der Auswertung des folgenden Prüfberichts:

Prüfbericht Nr. KTB 2000-15c vom 10.12.03 (anerkannt von KTB 2000-15 vom 11.07.00)
Prüfstelle: Prüfzentrum für thermische Solaranlagen (PZTS) am Fraunhofer ISE, Freiburg
Prüfverfahren gemäß DIN V 4757-4 und DIN V 4757-3

Am Standort Würzburg wird bei einem solaren Deckungsanteil von 40% der erforderliche Mindestertrag von 525 kWh/(m² a) erreicht.

Fraunhofer Institut für Solare Energiesysteme ISE Heidenhofstr. 2, D-79110 Freiburg Tel 0761-4588-0, Fax 0761-4588-9000

Freiburg, 10.12.03

Fraunhofer Institut für Solare Energiesysteme ISE

Dipl. Ing. (FH) A. Schäfer Bearbeiler

A. Solafer

Dipl. Phys. M. Rommel

Leiter des Prüfzentrum für Thermische Solarlagen

Fax-Solaranfrage

an Telefax-Nr.: + 49 (0)9355 / 998-36

Angaben zur Dimensionierung einer thermischen Solaranlage (Seite 1 von 2)

	· · · · · · · · · · · · · · · · · · ·	
Projekt		
Ansprechpartner ALTEC	H GmbH Pla	nung
Herr/Frau	Herr/Frau	
Telefon	Telefon	
Telefax	Telefax	
Montageort der Kollektoren		
Anlagen-Standort PLZ	Ort	
Ausrichtung der Kollektoren:	Himmelsrichtung Neigungswinkel	Annahmen, wenn
	West + Ost Y	nebenstehend keine Angaben gemacht wurden
	β	•
	0° Süd γ = °	γ = 45°
	α = ° β = °	D° Süd
	Bitte maßstäbliche Zeichnung der Südansicht beifügen!	0 300
Beschattung des Kollektorfeldes?	nein ja	nein
Verfügbare Dachfläche:	m Länge x Breite m	ausreichende
		Fläche vorhanden
Ausführung des Kollektorfeldes:	Inndachmontage Überdachmontage Flachdachmontage Fassadenmontage	Überdachmontage
	riachdachmontage rassadenmontage	
Beschaffenheit der Dachhaut:		Pfannendach
Rohrleitungen der Solaranlage		
Einfache Rohrlänge der Anlage:	m außerhalb des Gebäudes	1 m
	m innerhalb des Gebäudes	8 m
Heizraum / Aufstellungsraum o	ler (des) Speicher(s)	
Raumabmessungen:	m Höhe	> 2 m
	m Länge x Breite m	ausreichende Fläche vorhanden
Visitata Fishsis siffaces (Tila)	Davids or Davids	
Kleinste Einbringöffnung (Tür):	m Höhe x Breite m	2,00 x 1,20 m
Nutzung der solaren Wärme	Warmwasser (WW) Raumheizung (H)	Warmwasser (WW)
	Schwimmbadwasser (S)	

Fax-Solaranfrage

an Telefax-Nr.: + 49 (0)9355 / 998-36

Angaben zur Dimension	nierung einer thermischen Solaranlage (Seite 2 von 2)	Annahmen (Fortsetzung)
Warmwasserbereitung		—
Anzahl der Personen im Haushalt	Personen	4 Personen
Täglicher Warmwasserbedarf: (Richtwerte in Liter pro Person)	Niedrig	50 Liter pro Pers.
Tägliche Wassermenge:	Liter (Personen x Liter pro Person)	200 Liter
Waschmaschine mit Warmwasserans	chluss vorhanden? nein ja	nein
Spülmaschine mit Warmwasseransch	ıluss vorhanden? nein ja	nein
Warmwasserzapftemperatur:	°C	45 °C
Speicher-Maximaltemperatur:	°C	60 °C
Warmwasserzirkulation:	Zirkulationsverluste: W	keine
Schaltung Ein 1 Aus 1	Ein 2 Aus 2 Ein 3 Aus 3	
Uhrzeit : :		keine
Nachheizung	Verfügbare Kesselleistung: kW	18 kW
	Nutzungsgrad des Kessels: %	90 %
Nachheizung im Sommerbetrieb?	nein ja, mit	ja, mit
	Kessel-Nutzungsgrad (Sommerbetrieb):	50 %
Zusätzliches Speichervolumen?	Liter bivalent monovalent	kein
Brennstoff Heizöl Erdgas	Flüssiggas Biomasse Elektr. Fernwärme	Erdgas
Heizungsunterstützung	Norm-Außentemperatur: °C	-14 °C
,	Wärmebedarf: kW	6 kW
Vorlauftemperatur:	°C Rücklauftemperatur: °C	35 / 30 °C
Heiz-Grenztemperatur (Umstellung au	uf Sommerbetrieb):	15 °C
Grundlast im Sommerbetrieb:	kW	keine
Schwimmbadwassererwärmung	g privat öffentlich	privat
Betriebszeitraum: von	bis	Mai - September
Bauart: Hallenbad		Hallenbad
Freibad	freistehend geschützt Windschutz	geschützt
	Fliesenfarbe	blau
Becken: (Länge x Breite x Tiefe)	m x m x m	← Bitte angeben!
Beckenabdeckung? keine	vorhanden Abdeckungsart	vorhanden
_	°C	24 °C
Nachheizung mit Heizkessel über Wä	irmetauscher (WT)? nein ja, mit	ja, mit WT
WT-Leistung (für Nachheizung):	kW m³/h	← Bitte angeben!
Datum:	Interschrift	

Notizen

ALTECH Gesellschaft für alternative Energietechnik mbH

Am Mutterberg 4 – 6, D – 97833 Frammersbach Tel.: +49 (0)9355/998-34, Fax.: +49 (0)9355/998-36 E-Mail: <u>info@altech.de</u>, Internet: <u>http://www.altech.de</u>